fbpx
Tuesday, July 23, 2024
Home Blog

Refrigeration Technicians Best Tools

Essential Tools for Every Refrigeration Technician: A Comprehensive Review

Are you intrigued by the inner workings of refrigeration systems and the vital role they play in our everyday lives? Whether you’re an aspiring refrigeration technician or a seasoned pro, understanding the tools of the trade is essential.

In this comprehensive review, we delve into the top tools that every refrigeration mechanic should have in their arsenal. These tools are not mere conveniences; they are the very instruments that empower technicians to diagnose, repair, and maintain refrigeration systems efficiently and effectively.

1. Manifold Gauge Set: Refrigeration mechanics rely on manifold gauge sets to simultaneously measure high and low side pressures in refrigeration systems. These sets are like the eyes of the technician, providing critical insights into the system’s condition. By providing real-time data, refrigerant gauges are essential for diagnosing issues and ensuring optimal system performance.

List of Gauge Manifolds

1- Shikha 5 Foot (see image)

2- Fieldpiece SM380V

3- Testo 550’s

4- Lichamp Gauge Set

5- Yellow Jacket 42004

2. Vacuum Pump: A vacuum pump may seem unassuming, but its role is monumental. It evacuates air and moisture from refrigeration systems before the introduction of refrigerant, ensuring that the system operates efficiently without unwanted contaminants.

3. Leak Detection Tools: Finding elusive refrigerant leaks is a challenge without the right tools. Leak detection tools, including electronic detectors and bubble solutions, play a crucial role in environmental protection and system efficiency by pinpointing these leaks.

4. Digital Multimeter: An HVACR technician’s electrical diagnostic prowess relies heavily on a digital multimeter. This tool measures voltage, current, and resistance in electrical components, making it indispensable for troubleshooting electrical issues.

List of Digital Multimeters

1- KAIWEETS Digital Multimeter (see image)

2- AstroAI TRMS 6000

3- AstroAI 4000

4- Astro 2000

5- Klein MM325

5. Pipe Cutters and Flaring Tools: Copper pipes are the lifeblood of many refrigeration systems, and pipe cutters and flaring tools ensure these essential components are accurately cut and shaped for the job.

6. Pipe Benders: The importance of smooth, kink-free bends in copper pipes cannot be overstated. Pipe benders are the secret to achieving these precise bends without compromising the integrity of the pipe.

7. Thermometers and Thermocouples: When it comes to temperature measurement, accuracy is key. Thermometers and thermocouples help technicians monitor temperatures at various points in the system, assisting in both diagnostics and cooling optimization.

8. Tubing Tools: Properly preparing tubing for installation is a fundamental step in any refrigeration project. Tubing tools, such as deburrers and reamers, ensure that tubing is ready for action.

9. Hex Key Set: Hexagonal screws and bolts are commonplace in refrigeration systems. A set of hex keys is a technician’s trusty companion for swiftly disassembling and reassembling components.

10. Oil Pump and Oil Injector: Lubricating oil is the lifeblood of compressors. Oil pumps and injectors ensure that the compressor functions optimally by delivering the right amount of lubrication.

11. Torque Wrench: Precision matters in refrigeration systems. Torque wrenches guarantee that bolts and nuts are tightened to precise specifications, safeguarding components and maintaining proper seals.

12. Digital Scale: In the intricate world of refrigeration, precision is paramount. This is where a digital scale steps in as a silent but indispensable partner for refrigeration mechanics. Why? Because refrigerants, lubricants, and various chemicals must be added to systems with meticulous accuracy.

A digital scale ensures that the right quantities are added, helping maintain the system’s efficiency, performance, and, perhaps most importantly, the environment. It’s not just about getting the job done; it’s about getting it done right, and that’s where the digital scale shines. So, let’s weigh in on the importance of this often-overlooked tool in the refrigeration technician’s toolkit.

List of Digital Scales

1- Eiltech LMC-200A (see image)

2- Xetron High Accuracy

3- Eiltech LMC-300A

4- Yellow Jacket 68862

5- VIVOHOME Precision Electronic

These tools are the cornerstone of any refrigeration technician’s toolkit. Stay tuned as we dive deeper into each of these essential instruments, unveiling the art and science behind their usage, and why they’re indispensable for refrigeration technicians around the globe.

Air Filters vs COVID-19

In this article we’ll answer a question that we get all the time. What filter, if any, can filter out the SARS-CoV-2 virus which leads to COVID-19, the disease? We’ll show you how efficient the different air filters are at filtering out various items for asthma and allergy sufferers, and the virus that leads to COVID-19.

If you prefer to watch the Video of this presentation, then scroll to the bottom or click on the following link. Air Filters vs COVID-19

The ability of an air filter to remove microorganism, dust, pollen, dust mites, mold spores, pet dander, bacteria and viruses is indicated by a numerical value. This number, which is indicated as a MERV rating, states the filter’s efficiency at removing various sizes of these items. We’ll show you which filters, if any, work the best to protect you from these potentially harmful organisms. 

MERV Rating

Minimum Efficiency Reporting Values, or MERVs, indicate the filter’s ability to capture larger particles, those 0.3 microns and larger. The higher the numerical rating, the greater the air filter is at removing particles from the air stream. A MERV-13 is better than a MERV-11 filter at removing particles, but how good are they against bacteria and a very small virus that leads to COVID-19.

Virus and Bacteria Removal

According to ASHRAE, research has shown that the particle size of the SARS-CoV-2 virus that leads to COVID-19 is around 0.1 microns. This is much smaller than what may be picked up by these air filters. As this chart shows, the virus lives in the invisible region, while others like dust, cat dander and human hair are visible to the human eye. 

Sizes of various items shown in Microns. Invisible items in black area on chart, including the SARS-CoV-2 Virus.
Sizes of various items shown in Microns. Invisible items in black area on chart, including the SARS-CoV-2 Virus.

Luckily, the SARS-CoV-2 virus doesn’t travel through the air own its own. It rides on respiratory droplets and droplet nuclei (dried respiratory droplets) that are predominately 1 micron in size and larger. These filters have various efficiencies at capturing the viruses that are in the 1-to-3-micron range according to ASHRAE.

The SARS-CoV-2 virus riding a respiratory droplet in the 1 to 3 micron range
The SARS-CoV-2 virus riding a respiratory droplet in the 1 to 3 micron range

ASHRAE

As the chart shows, ASHRAE recommends using a minimum of a MERV 13 filter, which is at least 85% efficient at capturing particles in the 1 to 3-micron size range. A MERV 14 filter is at least 90% efficient at capturing those same particles. High-efficiency particulate air (HEPA) filters are even more efficient at filtering human-generated infectious aerosols. 

MERV Rating and Air Filter Efficiency for Particle sizes 1 to 3 microns in size
MERV Rating and Air Filter Efficiency for Particle sizes 1 to 3 microns in size

By definition, a HEPA air filter must be at least 99.97% efficient at capturing particles 0.3 micron in size. This 0.3-micron particle approximates the most penetrating particle size (MPPS) through the filter.  HEPA filters are even more efficient at capturing particles larger AND smaller than the MPPS. Thus, HEPA air filters are more than 99.97% efficient at capturing airborne viral particles associated with SARS-CoV-2 which leads to COVID-19.

Checkout these HEPA Filters for your Home or Office

HEPA filters can capture and trap microorganisms, including viruses and bacteria, helping to reduce the risk of respiratory infections. So, if possible, use the highest MERV rated air filter with your system, or get a portable HEPA air filter for your room or office. HEPA filters are the most efficient at capturing small microorganisms like the SARS-CoV-2 virus.

Where are HEPA Filters used?

HEPA air filters are used in residential, commercial, and industrial facilities. In homes there are portable types that can be moved from room to room, and others that can be installed in a central air conditioning system serving the whole house. 

HEPA air filters are also used along with ULPA filters in cleanrooms, labs, and other spaces requiring a very clean environment.

Asthma and Allergy Management

For individuals with asthma, HEPA filters help reduce asthma triggers like airborne irritants and respiratory allergens. According to the Asthma and Allergy Foundation of America (AAFA), nearly 26 million people have asthma in the United States. There are 4.8 million children under the age of 18, and nearly 21 million adults suffering from asthma. On average, 10 people in the unites States die every day from asthma. A total of 3,517 deaths in 2021.

According to the AAFA over 100 million people each year in the United States experience various types of allergies. Allergies are the sixth leading cause of chronic illness in the U.S. HEPA filters are highly effective at removing allergens such as pollen, dust mites, and pet dander, providing relief to allergy sufferers. 

Editorial Process:

Some of the links in this article may be affiliate links, which can provide compensation to the MEPAcademy at no cost to you if you decide to purchase. Our reviews and articles are made by an industry professional experienced in the engineering and construction of commercial buildings.

Air Filters vs COVID-19

HVAC Equipment Cost Database

Are you paying too much for your HVAC equipment? How do you know if the quote you received for your equipment is a fair price? Do you have a method of comparing what you have paid for various HVAC equipment with what is being quoted currently?

Keeping track of the cost of HVAC Equipment allows you to quickly provide budgets and check the cost of equipment before you purchase. This database allows you to easily keep track of the most common HVAC equipment.

HVAC Equipment Cost Database

Using an HVAC Equipment cost database will save you a lot of money by avoiding the costly mistake of paying too much for equipment.

Air Conditioners price per ton and price per square feet historical equipment pricing database
Air Conditioners in Historical Pricing HVAC Equipment Database

Get your copy here. HVAC Equipment Cost Database

The HVAC Equipment Cost database keeps track of all your equipment quotes or purchases for easy reference and parametric checks, such as cost per ton ($/Ton), cost per CFM ($/CFM)

Only $199

HVAC Piping Unit Pricing

For an HVAC Piping Estimators the need for quick budgets for the installation of piping is best handled with a spreadsheet of different material types and sizes. Having an estimating software program can make this process a lot easier, as the material pricing is always up to date and can be entered into the spreadsheet quickly. You can get a copy of this spreadsheet to help you price piping fast and efficiently.

HVAC Piping Unit Pricing Table
HVAC Piping Unit Pricing Calculator

HVAC PIPING UNIT PRICING 

Often the requirements of the RFP or bidding instructions will call for the price per foot to install piping beyond that which is required by the contract drawings. Such pricing maybe used for change-orders. Having these numbers available and updated often also gives you a quick reference for budgeting projects. It’s good to know when doing job site comparisons of different piping options or during discussions with engineering, what the cost is for the various piping sizes and types of materials. 

HVAC Piping Unit Pricing Calculator for Copper and Carbon Steel from 1/2" to 14"
HVAC Piping Unit Pricing Calculator for Copper and Carbon Steel from 1/2″ to 14″

COST PER FOOT

The cost per foot for the installation of piping needs to include fittings and hangers prorated into the value. It’s best to look at a standard length of pipe and then figure that you will have a Tee and 90 degree elbow in that length.

So for example, using twenty feet of copper water pipe with a Tee and 90 degree elbow plus the hangers to build a unit price would represent a field condition of a fitting every ten feet.

For higher density projects like Hospitals you could put more fittings in your unit pricing. Total those cost up and then divide by 20 to derive at a cost per foot for that particular size and material type.

20 feet of pipe + 2 Fittings + 3 Hangers / 20 = Cost per Foot

If the piping is insulated, you can also put the values in for insulation.

The Estimating Wizard provides two spreadsheets for tracking unit pricing, one for HVAC Piping and the other for Plumbing piping. Get a copy and start tracking your cost per foot, or be prepared to give a quick budget based on your knowledge from your spreadsheet of unit prices. Watch the video below to see how quick and easy it is to track the cost per foot for various sizes and material types. 

MEP Academy HVAC Piping Unit Pricing Spreadsheet

The MEP Academy provides a spreadsheet that makes calculating unit pricing simple. The spreadsheet is available by following this link, HVAC Piping Unit Pricing Spreadsheet

HVAC Piping Unit Pricing Calculator Example
HVAC Piping Unit Pricing Calculator Example

In the screenshot above there is a place for you to build your hanger requirements (#1), and a place to put your tax rate and hourly labor rate (#2).

For each size of pipe and material type you would insert the unit cost for Material (#3) and Labor (#4).

Under item (#5) you would build your typical run of pipe and enter the quantity of fittings you might expect for the type of building and system. You would add whatever you think will be required for every so many feet of pipe. In the example above we are showing that for every 20 feet of pipe you will have 1 Elbow and 1 Reducing Tee.

Under item (#6) you would add the cost per lineal foot for insulation if required. You could also look at insulation as a separate value and leave the pipe bare.

Line item (#7) is where you indicate the hanger spacing, and for each hanger you defined under item (#1) you will get the quantity as defined by the linear feet in item (#5) divided by your hanger spacing, which will affect your cost.

Line item (#8) is the calculated cost per linear foot of piping for that size and material type of pipe.

Summary Sheet

After you have all your unit pricing information inputted into the spreadsheet, all you have to do to get a budget for installing piping is to enter the quantity of piping (#9) for each size and material type (#10). The system will automatically calculate the cost (#11) to install that run of piping based on your unit pricing data. The total cost will be shown at the top of the spreadsheet (#12).

Piping Unit Pricing Calculator Summary Page
Piping Unit Pricing Calculator Summary Page

You can get your copy here. HVAC Piping Unit Pricing Spreadsheet

AC Condensate Drain Sizing and Layout

The proper sizing and layout of condensate drain lines is important for the protection of property and for the proper functioning of the air conditioning equipment.

If you prefer to watch our YouTube version of this presentation, scroll to the bottom.

Condensate Drain Pipe Sizing

The size required for the condensate pipe is dictated by the local code. Enclosed you will find the requirements for many local codes, but be sure to check your code for your local requirements. If the outlet size of the equipment’s condensate drain is larger than what’s shown in this chart then your required to use the larger outlet size.

Minimum Condensate Drain Pipe Sizing Chart
Minimum Condensate Drain Pipe Sizing Chart

Slope to be at least 1/8” per foot or 1 percent, that is for every 12” horizontally there must be at least an 1/8” drop vertically. 

Condensate drain piping to slope a minimum of 1/8" per every 12" horizontal
Condensate drain piping to slope a minimum of 1/8″ per every 12″ horizontal

Attics or Furred Spaces

If the Air Conditioner is suspended above an inaccessible ceiling, such as a gypsum board ceiling or attic space then you will need to provide a means for protecting the building elements from the overflow of the primary drain and for indicating that there is a leak.

Also, drain pans that are poorly drained can cause water to stay in the pan risking the possibility of algae and bacteria growth. Below are some possible solutions, but as always check your local code for the approved method.

  • Option 1 – Secondary drain pan with drain piping. This would hang below the Air Conditioning unit in case the A/C units primary pan overflowed. Also, there is a requirement to provide secondary drain piping to a point of termination that would provide notification to the occupants that there is a leak, such as terminating above a window or doorway.
Option 1 - Secondary drain pan with piping terminating in observable location
Option 1 – Secondary drain pan with piping terminating in observable location

  • Option 2 – An additional drain pipe connection that sits above the primary drain connection and whereby the secondary drain piping terminates in a location to alert the occupants of the clogged primary drain.
Option 2 - Secondary drain piping connection to primary drain pan
Option 2 – Secondary drain piping connection to primary drain pan

  • Option 3 – Leak detection device that automatically shuts down the Air Conditioner if the primary drain becomes clogged.
Option 3 - Primary drain with leak detection device
Option 3 – Primary drain with leak detection device

  • Option 4 – Secondary drain pan with leak detection, located beneath the coil that shuts down the unit upon a leak.
Option 4 - Secondary drain pan with leak detection
Option 4 – Secondary drain pan with leak detection

The additional drain pan or drain pan connection shall be provided with a drain pipe that will determinate in an observable area, such as in front a window or above a doorway, and be of a size not less than 3/4”. Secondary drain pan shall not be less than 1-1/2” in height and extend 3” wider on each side of the coil or AC unit.

Secondary drain piping terminating above window. Pipe doesn't have to be visible as shown.
Secondary drain piping terminating above window. Pipe doesn’t have to be visible as shown.

Drain Termination 

Where can and can’t you terminate the air conditioners condensate drain piping? There are several options where you can terminate the condensate drain line;

  • Indirect Drain
  • Condensate Pump to Indirect Drain
  • Drywell
  • Leach pits
  • Landscaped areas that are properly designed to handle the volume of condensate
  • To Properly designed stormwater treatment systems. 

Indirect Drain

  • Lavatory tailpiece in the same tenant space as the air conditioner
  • Laundry standpipe
  • Janitors Sink
  • Inlet of Bathtub Overflow – Must be accessible
  • Collect and send to cooling tower (See description below)
Cooling Coil condensate to sink tailpiece.
Cooling Coil condensate to sink tailpiece.

The connection to a plumbing fixtures tailpiece has to be made within the same tenant space as the air conditioner cooling coil that is generating the condensate.

Drywell

A drywell can be used for the termination of your air conditioners condensate drain. Check your local code for the specifics, but generally it includes some or all of the following depending on whether it’s for residential or a commercial project:

  1. A minimum size hole, such as 2 foot by 2 foot by 3 feet deep, or a round hole such as 12” diameter by 3 feet deep.
  2. A minimum of 6” of soil or concrete shall provide cover above the rocks
  3. Some form of barrier between the soil and the top of the drywell where the rock begins, such as building paper or plastic
  4. Drywell to be filled with gravel or crushed rock, often with a stated minimum size rock such as 1 inch diameter
  5. The termination of the condensate drain pipe shall connect indirectly to the drywell drain pipe.
  6. The drywell drain pipe to be a minimum of 1-1/2” PVC or other approved material.
  7. Drywell to be at least three feet away from the building structure or any footings.
Drywall for Air Conditioner Cooling Coil Condensate
Drywall for Air Conditioner Cooling Coil Condensate

There are various methods of providing drywells depending on the local code. There are prefabricated drywells that can be used and ones that are made by using a large diameter piece of PVC pipe or similar material.

Some codes will require you to collect the condensate from cooling coil drain pans and return it to the cooling tower if the equipment is served by a cooling tower and the total combined capacity of the HVAC cooling coils exceeds a certain amount like 65,000 btu/hr.

This is a water conservation measure, and there are some exceptions to this requirement, such as if the total capacity of the AC Equipment cooling coils are less than 10% of the total capacity of the cooling tower, or if the location of those AC Cooling coils are in a remote location, far from the tower.

Some locations where you can’t terminate condensate;

  • Public ways
  • Sidewalks
  • Driveways
  • Alleys
No termination of condensate on public area ways
No termination of condensate on public area ways

Excluded from Code Requirements

Excluded from these codes are non-condensing type of equipment like radiant cooling panels that are designed to prevent condensate from occurring by keeping the temperature of the chilled water above the dew point temperature/vapor pressure of the surrounding air. These are system designed to operate in sensible cooling only modes.

Piping Material

The material types that can be used for condensate drain piping varies by jurisdiction but the most commonly cited materials are: 

  • Copper
  • PVC – DWV
  • CPVC
  • ABS – DWV
  • Polyethylene
  • Galvanized steel
  • Cast iron.

Also the use of short radius 90-degree elbows are often prohibited. You can normally use standard fittings until you reach a certain size at which point you might be required to use drainage pattern fittings (DWV)

Traps

Traps are to be installed as required per the manufactures recommendation. No traps are required on the secondary drain pan, this is to allow immediate notification that the primary drain has failed.

Cleanouts

Cleanouts are required in case of plugged drain pipes. Provide as required to prevent the need to cut drain pipes for unplugging. Some of the following maybe used for cleanouts if approved by your local code authority;

  • Plugged tees
  • Union connections
  • Short clamped hoses at the unit (see image above)

When you have more than one air conditioning unit condensate tied to a main condensate pipe, then every change of direction shall have some method of cleanout. Check your local code as this maybe a requirement for even a single air conditioners condensate piping.

Condensate Pumps

Condensate pumps can be used to elevate the condensate vertically to a point where it will then discharge into a code approved gravity sloping condensate drain line. The condensate pump should be interlocked with the Air Conditioning Unit to prevent its operations if the condensate pump is inoperable. 

Checkout these Condensate Pumps

Please remember that code requirements are always changing, so check for the most current code in your area at the time of design and installation. Or ask an inspector for the current installation practice.

Refrigerant Line Sets

Video of this Article

MEP Academy Estimating Spreadsheet

Having an MEP Academy Estimating Spreadsheet that automates portions of your estimates, will save you valuable time that could be used to make more sales. All aspects of the cost of furnishing and installing an HVAC and/or a Plumbing system is contained in one spreadsheet made specifically for the MEP industry. For plumbing only see below.

For a Plumbing only Spreadsheet, use this Commercial & Residential Version. Plumbing Only. For a simple Residential HVAC & Plumbing Spreadsheet. Residential version.

Dashboard

The Main Dashboard provides you with all the information you need to make a quick decision on whether to make further adjustments, or if one of the metrics looks out of place based on historical data. The Dashboard gives you a quick overview of all that is going on within the Estimating Spreadsheet.

Estimating Dashboard within the MEP Academy Estimating Spreadsheet

Your MEP Academy Estimating Spreadsheet needs to be able to handle rental equipment, general conditions, subcontractors, piping and plumbing takeoffs, sheet metal, labor rate tables with crew mix capabilities, , and a bid summary. Each sheet in the estimating spreadsheet automatically calculates the values you enter, showing you a new total bid amount.

Will cover portions of the MEP Academy Estimating Spreadsheet starting at the back of the Excel spreadsheet and working our way toward the front summary page last.

Labor Rate & Crew Mix Table

Choose your crew mix based on the level of experience and the different pay scales based on each project. Pick any combination and quantity of tradesman based on the requirements of the project. 

Labor Rates and Crew Size within the MEP Academy Estimating Spreadsheet

There is a separate crew labor rate for HVAC Piping Shop & Field, Sheet Metal Shop & Field, and Plumbing.

Labor Crew Size and Labor Rate
Labor Crew Size and Labor Rate

HVAC & Plumbing Equipment

Enter the project equipment price and labor to rig the HVAC and Plumbing equipment into place. Compare supplier pricing easily side by side. The MEP Academy Estimating Spreadsheet automatically selects the lowest bidder but lets you override that decision.

HVAC Equipment page within the Estimating Spreadsheet
HVAC & Plumbing Equipment Sheets

General Conditions

Do you need a jobsite trailer or onsite management? Enter the quantity and level of the staff required to run the project, whether one person or dozens. Set the quantity and duration of each general condition, along with the rate. General Conditions is broken down into three sections as follows: #1 – Management, #2 – Construction Office (Non-Reoccurring Expenses), and #3 – Construction Office (Reoccurring Expenses).

General Conditions in Estimate
General Conditions in Estimate Spreadsheet

HVAC & Plumbing Subcontractors

HVAC & Plumbing contractors often subcontract out for Air & Water Balance, Sheet Metal & Piping Insulation, Water Treatment, Building Automation, Excavation and other specialty trades that they don’t self-perform. This spreadsheet was made especially for the HVAC & Plumbing contractor and their most often used subcontractors.

Subcontractors – Rentals – GC’s – Engineering Pages
Subcontractors Page in Spreadsheet

Plumbing Fixtures

For those contractors that do plumbing the following Plumbing Fixture sheet will give you a place to record your vendors quotes and the labor it takes to install each type of fixture. What is also revealed is the overall cost per fixture.

Plumbing Fixtures page within the Estimating Spreadsheet
Plumbing Fixtures

MEP Specialty Sheets

Each trade has a specialty sheet for those items that aren’t considered equipment or a fixture, but for which there is a cost impact. The MEP Academy Estimating Spreadsheet includes Sheet Metal, HVAC Piping & Plumbing Specialty sheets.

HVAC and Plumbing Specialty Pages within the Estimating Spreadsheet
Specialty Sheet In Estimating Spreadsheet
Specialty Sheets in Estimate Spreadsheet

Material & Labor Summary Sheets

You will find a Sheet Metal, HVAC Piping & Plumbing material & labor summary sheets where all of the other specialty sheets are summarized for your review and last minute edits. Each sheet will be divided between field & shop fabrication work. The first section covers the field installation items.

Sheet Metal Material and Labor Summary – Estimating Spreadsheet

Field Summary Section

This is where you will put your material takeoff information for the following:

  • Rectangular & Round Ductwork
  • HVAC Piping
  • Plumbing Piping

This is also where the other sheets that you filled out will be summarized, such as the following;

  • HVAC & Plumbing Specialties
  • HVAC & Plumbing Equipment Labor
  • Plumbing Fixtures
Material & Labor Summary Sheet in Estimating Spreadsheet
Material and Labor Summaries

Each of the field labor summary sheets contain a row to add for the following

  • Material Handling
  • Consumables
  • Punch List
  • Cleanup
  • Detailing
  • Supervision

Shop Fabrication Summary Section

For those of you that have a fabrication shop, there is a section to add material and labor.

Shop Fabrication Summary
Shop Fabrication Summary

Rentals

For those HVAC air conditioning and Plumbing projects that require a crane, fork lift, scissor lift or any other equipment that you don’t own but will be required on the project. Having a spreadsheet that maintains a list of the most common equipment you normally rent along with their rental rate will save you time and money while avoiding having to call for pricing on every job.

Rental Sheet in Estimating Spreadsheet
Rental Sheet in Estimating Spreadsheet

Engineering

If you do your own design then you should have a sheet of each of the personnel responsible for spending time on the engineering task. If you’re doing design/build work, but don’t do the engineering yourself, but hire a third party, then you should add some engineering review time. It’s your responsibility to manage your third-party engineer to make sure they design within your cost parameters.

Engineering Cost
Engineering Cost Tab in Estimating Spreadsheet

Estimate Summary

All of your estimates are summarized on the last tab of the  MEP Academy Estimating Spreadsheet for easy review. You can quickly scan each of the categories to see where all the project cost has shown up. There is the labor and material summary for HVAC Sheet Metal, HVAC Piping, and Plumbing and another section for Subcontractors, General Conditions, Rentals, etc.

Estimating Spreadsheet Summary Page
Estimating Summary
MEP Academy Estimating Spreadsheet Summary

Bid Risk Assessment Form

The MEP Academy Estimating Spreadsheet contains a bid risk assessment form that rates the success of winning any particular project that you are contemplating pursuing. The risk assessment form will help you determine if the project is worth bidding based on a set of questions that rate your answers.

Bid Risk Assessment Form
Bid Risk Assessment

The answers to these questions will give you a score from which you can use to see how the project rates on a scale of risk and reward. The total risk assessment score will also inform you which level of approval is required within your company depending on how you rate your risk values as the example shown below. The total score is 25, which according to this contractor would require the Vice President to sign-off on the project or approve the decision to pursue bidding on the project.

Bid Risk Assessment Score
Bid Risk Assessment Score

MEP Academy Estimating Spreadsheet Summary

The MEP Academy Estimating Spreadsheet is used to gather all the information for estimating a project, putting it into a format where you can make quick adjustments and decisions while the spreadsheet gives you an immediate update on the price.

Purchase this spreadsheet at its currently reduced price of ONLY $245.00, which usually sells for $599.00

Watch the YouTube video below to see the MEP Academy Estimating Spreadsheet in action.

Buy Now for ONLY $245

Why use Steam

Why use steam for heating? Steam is an excellent medium for heating due to its unique properties, particularly its specific volume and latent heat of vaporization. Here’s an explanation of why these properties make steam beneficial for heating.

Specific Volume of Steam

Specific volume is the volume occupied by a unit mass of a substance, in this case steam.

Steam has a significantly larger specific volume compared to liquid water. This means that for the same mass, steam occupies a much larger space. When steam gives up its heat and condenses into water, it undergoes a dramatic reduction in volume, because water occupies much less space. 

Specific Volume of Saturated Steam. Increased pressure, reduces steam volume.
Specific Volume of Saturated Steam. Increased pressure, reduces steam volume.

Here we have 1 pound of steam at different gauge pressures. At 0 PSIG our specific volume is the greatest at 26.78 cubic feet per pound of steam. As we increase the pressure on the same pound of steam the volume gets smaller, and smaller. At 15 PSIG the volume is about half of that at 0 PSIG, and if we increase the pressure to 50 PSIG the volume decreases again by about half to 6.68 cubic feet per pound. Boilers are rated by their pressure, with low pressure considered 15 PSIG and less, and pressures over that are considered high pressure boilers.

We can see that if we drop the pressure from 50 psig to 15 psig, the same amount of steam now requires twice as much space or volume. By increasing the steam pressure, we can squeeze the same amount of steam into a smaller space. Now less look at how much energy steam holds at these different pressures.

Latent Heat of Vaporization for Dry Steam

The latent heat of vaporization is the amount of heat required to convert a unit mass of a liquid into a vapor without a temperature change. Steam holds more energy per pound than water. If we first look at water at 32 degrees Fahrenheit and the energy it takes to get that 1 pound of water to the boiling point of 212 degrees Fahrenheit, and then convert that pound of water to vapor we’ll understand the differences. 

Latent Heat of Vaporization for Steam at 0 psig is 970 Btu/Lb

A BTU is the amount of heat required to raise 1 pound of water, 1 degree Fahrenheit. This would require 180 BTUs to raise our water at 32 degrees to 212 degrees Fahrenheit. This means our 1 pound of liquid water at 212 degrees Fahrenheit holds 180 btu’s. We would then need approximately 970 BTU to convert the water at 212 degrees Fahrenheit to vapor at 212 degrees Fahrenheit, there is no change in temperature, just a change of state from water to vapor. The vapor holds 970 Btu’s, while the water holds only 180 Btu’s. This is one of the big advantages of using steam.

Steam carries a large amount of energy due to its high latent heat of vaporization. When steam condenses back into water on the surface of a heat exchanger, it releases this substantial amount of energy, which can be used for heating purposes. This energy release is highly efficient, making steam an effective medium for transferring heat.

Why Use Steam for Heating

The enthalpy of steam does not significantly change with an increase in pressure, which means that the total energy content (including both sensible heat and latent heat) of steam remains relatively constant across different pressures. This characteristic indicates that the efficiency of steam as a heat transfer medium is not primarily due to changes in its enthalpy with pressure. 

Instead, the primary advantage of using steam lies in its high latent heat of vaporization and the efficient heat transfer during condensation. These properties enable steam to transfer large amounts of energy quickly and effectively, making it a preferred choice for heating applications despite the relatively stable enthalpy across varying pressures.

As the pressure of steam increases, its specific volume significantly decreases, meaning that the steam becomes denser and occupies less space per unit mass. This reduction in specific volume with higher pressure allows for the use of smaller diameter piping to transport the same amount of steam energy.

Smaller pipes require less material, which reduces the overall material costs. Additionally, smaller piping is easier and quicker to install, leading to lower labor costs. This efficiency in piping size and installation makes steam systems economically advantageous in industrial and commercial applications.

Efficient Heat Transfer using Steam

When steam contacts a cooler surface, it condenses rapidly, releasing a large amount of heat almost instantaneously. This rapid condensation makes steam an excellent medium for delivering heat quickly and efficiently.

Steam provides uniform heating as it condenses at a constant temperature. This is particularly advantageous in processes requiring consistent temperature control.

Ease of Transport and Control

Due to its gaseous state, steam can be easily transported through pipes over long distances without significant heat loss. This makes it ideal for centralized heating systems where the heat source is distant from the application point.

Steam systems are relatively easy to control using valves and other mechanisms, allowing for precise regulation of heat delivery to different parts of a building or process.

Economic and Practical Considerations

Steam heating systems are often cost-effective, both in terms of initial setup and operational costs, especially in large-scale applications like commercial buildings and industrial processes.

Steam can be used in a variety of heating applications, from space heating in buildings to process heating in industries.

In summary, steam’s high latent heat of vaporization and large specific volume, combined with its efficient heat transfer capabilities and ease of transport and control, make it a highly effective and versatile medium for heating applications.

Why use Steam Heating

Top 10 HVAC Service Calls

Here are the Top 10 HVAC Service Calls, along with their typical solutions and estimated costs. Most of these problems occur due to poor installation, inadequate service procedures, or lack of maintenance.

#1 No Cool Air Flowing

Problem: Dirty air filters or blocked vents.

Solution: Replace air filters and clear any obstructions. Clogged and dirty filters restrict airflow and significantly decrease the system’s efficiency. When airflow is obstructed, air can bypass the filter, depositing dirt directly onto the evaporator coil, which impairs the coil’s ability to absorb heat. By replacing a dirty, clogged filter with a clean one, you can reduce your air conditioner’s energy consumption by 5% to 15%. Dirty filters also put additional stress on the indoor fan leading to fan failure.

Estimated Cost: $70 to $200

#2 Thermostat Issues

Problem: Malfunctioning or incorrectly set thermostat.

Solution: Calibrate, repair, or replace the thermostat. Approximately 25% of U.S. households use a smart thermostat. Smart thermostats are designed to be user friendly and energy efficient but can be incorrectly programmed. Issues can be related to thermostat complexity, user error, default settings, connectivity issues or lack of training.

Estimated Cost: $90 to $300

#3 Refrigerant Leaks

Problem: Low refrigerant due to leaks or improper initial charge.

Solution: Locate and repair leaks, recharge refrigerant. Inexperienced technicians can under or overcharge system with refrigerant. Make sure refrigerant charge matches the manufacturers recommendations, and don’t add refrigerant until system has been tested for leaks.

Estimated Cost: $200 to $1,500

#4 Poor Airflow

Problem: Blocked ducts, vents or dirty filters, or fan issues.

Solution: Clear blocked ducts, unblock vents, clean coil, repair or replace the fan motor.

Estimated Cost: $300 to $900

#5 Strange Noises

Problem: Loose or damaged parts, debris in the system.

Solution: Inspect and tighten components, remove debris, and replace damaged parts. Some reasons for noises can be worn bearings in the fan motor or the compressor can wear out over time, causing grinding or squealing noises. If your system has belts, worn or misaligned belts can cause squealing or screeching noises. Loose bolts, screws, or panels within the unit can vibrate and produce rattling noises.

Estimated Cost: $100 to $400

#6 AC Unit Won’t Turn On

Problem: Electrical issues, tripped breaker, faulty capacitor, or burned-out compressor.

Solution: Check and reset breaker, replace capacitor, inspect wiring, or hit the reset button located in compressor’s access panel if available. On hot days it’s not uncommon for the high-pressure limit switch to shut the system off to protect the compressor or draw excessive amps that cause the breaker to trip. Compressors can burn-out due to many issues such as electrical spikes or inconsistent voltage levels, faulty wiring or components, low refrigerant charge or contaminated refrigerant, operating in extreme weather, normal wear and tear.

Estimated Cost Electrical Issues: $100 to $350

Estimated Cost burned-out Compressor: $1,500 to $2,500 or more depending on type and size of compressor.

#7 Water Leaks

Problem: Clogged drain line, frozen evaporator coils.

Solution: Unclog drain line, thaw coils, ensure proper insulation. A clogged drain line could also reduce the unit’s capacity to reduce humidity levels. 

Estimated Cost: $150 to $500

#8 Unpleasant Odors

Problem: Mold or mildew in the ductwork or unit.

Solution: Clean ducts, replace filters, clean drain pan, and check for mold. Cleaning ducts enhances HVAC system efficiency by improving airflow and reducing energy consumption. It helps reduce odors by removing dust, mold, and pest residues. Additionally, it significantly improves indoor air quality by reducing allergens, mold spores, and other pollutants, contributing to better respiratory health and overall well-being for the occupants. Regular duct cleaning is a crucial part of maintaining a healthy, efficient, and comfortable indoor environment.

Estimated Cost: $300 to $700

#9 Frequent Cycling

Problem: Thermostat issues, dirty filters, improper refrigerant levels, oversized air conditioner. Oversized air conditioners can cause the system to cycle on and off frequently, a phenomenon known as short cycling which causes rapid cooling, inadequate dehumidification, increased wear and tear, higher energy bills, and temperature fluctuations. 

Solution: Adjust thermostat settings, replace filters, check refrigerant levels.

Estimated Cost: $100 to $400

#10 High Energy Bills or Lack of Cooling

Problem: Inefficient system, dirty coils and bent fins.

Solution: Clean coils and comb any bent fins. Dirty coils and bent fins can cause various issues such as reduced cooling efficiency, higher energy consumption, and potential system freeze-ups. The typical solution involves cleaning the coils, where the cost will depend on the severity and accessibility of the coils. Regular maintenance to keep the coils clean can prevent many related problems and ensure the system operates efficiently.

Estimated Cost: $150 to $500

These costs are approximate and can vary based on location, the specific HVAC system, and the service company rates. Regular maintenance can help prevent many of these issues and extend the lifespan of the HVAC system. Let us know in the comments below what your top 3 service call complaints are, and the typical cost to repair.

Top 10 HVAC Service Calls and their Cost to Repair

How to Calculate EER SEER HSPF

When buying a car, you might look at how many miles per gallon the car can achieve when comparing which car is more efficient. This is an indication of its ability to convert fuel into a certain distance traveled. A similar ratio in the HVAC industry is used to indicate how efficient an air conditioner or heat pump is at using electricity to produce BTU’s.

Beginning on January 1, 2023, the US Department of Energy (DOE) has changed to a new rating system where different regions of the United States are divided up. There are now Northern and Southern regions with varying efficiency ratios. Any air conditioners installed starting in 2023 and after in the Southwest and Southeast regions of the United States must meet the new SEER2 energy efficiency standard.

SEER2 Energy Efficiency Standards Map
SEER2 Energy Efficiency Standards Map

Regions matter because different standards are based on the climate needs of customers living in the North, Southeast, and Southwest regions. People in southern climates, where air conditioners are used more frequently, require more energy-efficient systems. Therefore, depending on your geographical region and HVAC needs, split system air conditioners, heat pumps, and single-package systems may have varying efficiency standards.

Energy Efficiency Ratio (EER)

The Energy Efficiency Ratio (EER) measures the efficiency of an air conditioning system or heat pump. It indicates how effectively the unit converts electrical energy into cooling output. Specifically, EER represents the ratio of the cooling capacity (in British Thermal Units per hour, or BTU/h) to the power input (in watts) at a given operating condition.

EER Calculation

EER = Cooling Capacity (BTU/h) / Power Input (W)

EER is typically measured under specific conditions: an outdoor temperature of 95°F, an indoor temperature of 80°F, and 50% relative humidity. This standardization allows for a direct comparison of different units under the same conditions.

Seasonal Energy Efficiency Ratio (SEER)

The Seasonal Energy Efficiency Ratio (SEER) measures the overall energy efficiency of an air conditioning system or heat pump over an entire cooling season. Unlike the Energy Efficiency Ratio (EER), which is calculated at a single operating condition, SEE considers the variations in temperature and cooling demand that occur throughout the season. It represents the ratio of the total cooling output (in BTUs) to the total electrical energy input (in watt-hours) over the cooling season.

SEER Calculation

SEER = Total Cooling output over a Season (BTU) / Total Electric Energy Input over a Season (Wh)

SEER ratings provide a standardized way to compare the energy efficiency of different air conditioning units and heat pumps, considering the varying cooling demands throughout the cooling season. This helps consumers and professionals make informed decisions when selecting HVAC equipment for energy efficiency and cost savings.

Heating Seasonal Performance Factor (HSPF)

The Heating Seasonal Performance Factor (HSPF) measures the efficiency of heat pumps in heating mode over an entire heating season. It represents the ratio of the total heating output (in British Thermal Units, or BTUs) to the total electrical energy input (in watt-hours) during the heating season. HSPF provides an indication of how efficiently a heat pump converts electricity into heat over a range of conditions and temperatures experienced throughout the heating season.

HSPF Calculation

HSPF = Total Heating Output (BTU) / Total Electric Energy Input (Wh)

HSPF provides a comprehensive measure of a heat pump’s heating efficiency over a typical heating season, helping consumers and professionals make informed decisions about equipment that offers better energy savings and performance in various climates.

The new SEER2 Standards

The calculation for SEER2, like the original SEER, is designed to measure the overall energy efficiency of an air conditioning system or heat pump over a cooling season. While the fundamental formula remains similar, SEER2 incorporates updated testing conditions and procedures to better reflect real-world performance.

SEER2 Calculation

SEER2 = Total Cooling Output (BTU) / Total Electric Energy Input (Wh)

Key Differences in SEER2 vs SEER Calculation:

1. Updated Testing Conditions

SEER2 includes more representative testing conditions that reflect a wider range of operating environments and load profiles, considering part-load and variable load conditions more accurately.

2. Improved Measurement Techniques

SEER2 employs updated measurement techniques to account for variations in system performance, cycling losses, and other factors that impact efficiency under real-world conditions.

3. Standardized Load Profiles

SEER2 uses standardized load profiles that mimic the fluctuating cooling demands typical of an entire cooling season, offering a more comprehensive assessment of system efficiency.

Example Calculation

If an air conditioning system provides 60,000 BTUs of cooling over a season and consumes 4,000 watt-hours (Wh) of electricity during that time, the SEER2 would be calculated as follows:

SEER2 = 60,000 BTU / 4,000 = 15

Application

Regulatory Standards: SEER2 is used to set minimum energy efficiency standards for new HVAC systems, ensuring they meet contemporary performance requirements.

Product Comparison: Consumers and professionals can use SEER2 ratings to compare the efficiency of different air conditioning units and heat pumps, aiding in the selection of more energy-efficient models.

Energy Savings: Higher SEER2 ratings indicate better energy efficiency, which translates to lower energy consumption and cost savings over the cooling season.

By incorporating more realistic testing conditions, SEER2 provides a more accurate measure of an HVAC system’s seasonal energy efficiency, helping to promote the use of systems that are more efficient and environmentally friendly.

Uses of EER, SEER and HSPF

Performance Assessment: These calculations offer a standardized way to compare the efficiency of different air conditioners or heat pumps. A higher value indicates better energy efficiency.

Energy Cost Savings: HVAC Equipment with higher ratings use less electricity to produce the same amount of heating or cooling, leading to lower energy bills.

Environmental Impact: More efficient air conditioners or heat pumps reduce overall energy consumption and greenhouse gas emissions, contributing to environmental sustainability.

Regulatory Compliance: In many regions, building codes and energy standards specify minimum efficiency ratio requirements for air conditioners and heat pumps. Compliance with these regulations ensures that installations meet energy efficiency standards.

Excavation and Backfill

In this article we’ll cover how to calculate cubic yards of excavation and backfill, soil types, excavation equipment, soil testing, compaction, swell factor, the difference between excavating and trenching, and when shoring or trench supports are required.

First let’s cover a few very important items that need to be done before any digging begins.

Call 811 before Digging

The first thing to do is call 811. Calling 811 before digging is crucial because it helps identify and locate underground utilities such as gas lines, water pipes, and electrical cables. This free service coordinates with utility companies to mark the locations of these buried lines, preventing accidental damage that can cause service disruptions, costly repairs, and serious safety hazards such as gas leaks or electrical shocks.

Call 811 before any digging begins to get notified of any known underground utilities.
Call 811 before any digging begins to get notified of any known underground utilities.

By calling 811, individuals and contractors ensure compliance with safety regulations and protect themselves, their property, and the community from potential dangers associated with unmarked utilities.

APWA Color Coding

Using the American Public Works Association (APWA) color coding system to mark your site before excavating ensures clear and standardized communication of underground utility locations. This system assigns specific colors to different types of utilities, such as red for electric power lines, yellow for gas, oil, or steam, and blue for potable water.

American Public Works Association color chart for marking excavations
American Public Works Association color chart for marking excavations

By using these color codes, you help prevent utility damage, reduce the risk of accidents, and comply with industry best practices and regulations, ensuring a safer and more efficient excavation process. A white mark is used to outline the proposed route of the excavation. These markings can be on the surface or with flags and stakes used to increase visibility.

Tolerance Zone

The tolerance zone is a safety buffer zone around existing underground utilities within which excavation must be conducted with extra caution. Typically, it extends 18 to 24 inches (45 to 60 centimeters) from each side of a marked utility line. Within this zone, hand digging or using non-invasive methods like vacuum excavation is required to avoid damaging the utilities. Adhering to the tolerance zone helps prevent utility strikes, ensuring the safety of workers and the integrity of underground infrastructure.

Tolerance Zone when excavating near existing utilities
Tolerance Zone when excavating near existing utilities

One of the first steps is to determine the Soil type.

Soil Classifications

OSHA (Occupational Safety and Health Administration) classifies soils into three main categories—Type A, B, and C—based on their stability and cohesiveness, which is critical for ensuring safety during excavation work. The soil type must be identified by a competent person as defined by OSHA. Here are the definitions and purposes of these classifications:

Soil Types and their Sloping Requirements per OSHA
Soil Types and their Sloping Requirements per OSHA

Type A Soil

Type A soil is the most stable and cohesive type of soil. It includes clay, silty clay, and hardpan, with an unconfined compressive strength of 1.5 tons per square foot (tsf) or greater.

Knowing that Type A soil is highly stable helps in planning safe excavation slopes and support systems, minimizing the risk of cave-ins.

Type B Soil

Type B soil has medium stability. It includes silt, silt loam, sandy loam, and previously disturbed soils, with an unconfined compressive strength greater than 0.5 but less than 1.5 tons per square foot.

Understanding that Type B soil is less stable than Type A guides the implementation of additional safety measures such as shoring or sloping at a less steep angle.

Type C Soil

Type C soil is the least stable type. It includes gravel, sand, and loamy sand, with an unconfined compressive strength of 0.5 tons per square foot or less. It also includes submerged soil or soil from which water is freely seeping.

Recognizing Type C soil’s high risk of collapse necessitates the use of the most stringent protective systems, like benching, shoring, or shielding, and sloping the excavation walls at the shallowest angles.

These classifications help ensure that appropriate excavation practices and protective systems are used to maintain worker safety and prevent cave-ins. You can also test the soil.

How to Protect Workers from Cave-ins

Safety is the main concern when working around excavations. There are various protective systems to safeguard workers from cave-ins during excavation and trenching operations. These protective systems are designed to provide support and stability to the excavation walls, reducing the risk of collapse and ensuring worker safety. The primary types of protective systems include:

Sloping

Sloping involves cutting back the trench walls at an angle to create a stable slope that reduces the risk of collapse. The angle of the slope depends on factors such as soil type, excavation depth, and environmental conditions. 

Using the Excavation calculator found in the MEP Academy Plumbing Estimating Spreadsheet you can easily calculate the required cubic yards required. Just enter the soil type along with the length, width and depth of the excavation or trench. The calculator takes into consideration the slope if indicated. Just put an “X” in the box for Stable Rock which doesn’t require a slope, or type A soil which is a 3/4:1 slope, type “B” at 1:1, and type “C” soil for 1-1/2:1. The total cubic yards are automatically calculated including any sloped area.

Soil Excavation Calculator in the MEPAcademy's Plumbing Estimating Spreadsheet
Soil Excavation Calculator in the MEPAcademy’s Plumbing Estimating Spreadsheet

To get a copy of the Estimating Spreadsheet with the Excavation and backfill calculator follow this link. Plumbing Estimating Spreadsheet.

Benching

Single and multiple benching are techniques used to create safe slopes in excavations, particularly in trenches and other large soil removals. These methods help prevent soil collapse and ensure worker safety by reducing the risk of cave-ins. Here’s a description of each:

Bench Excavations
Bench Excavations

Single Bench

A singe bench involves excavating the soil to create one horizontal step or bench along the slope of the excavation. This bench provides a stable working platform and reduces the steepness of the slope, which helps prevent soil from sliding into the trench.

Single benching is typically used in less deep excavations where the height of the slope does not require multiple steps for stability. It’s suitable for soils that are relatively cohesive and stable.

Multiple Bench

A multiple bench cut involves creating a series of horizontal steps or benches at regular intervals along the slope of the excavation. Each bench acts as a break in the slope, significantly reducing the likelihood of a cave-in by supporting the soil above it.

Multiple benching is used in deeper excavations where a single bench would not provide sufficient stability. It is especially important in less cohesive soils that are more prone to collapse. This method ensures greater safety by distributing the weight of the soil and providing additional support.

Key Considerations

As a general rule, the bottom vertical height of the trench must not exceed 4 ft (1.2 m) for the first bench. Subsequent benches may have a vertical height of up to 5 ft (1.5 m) in Type A soil and 4 ft (1.2 m) in Type B soil, reaching a total trench depth of 20 ft (6.0 m). 

Slopes vs Trenches

To avoid the need for a sloped excavation, which can be impractical in certain situations due to space constraints or other factors, several alternative protective systems can be used to ensure worker safety and prevent cave-ins. Trenches 5 feet (1.5 meters) deep or greater require a protective system unless the excavation is made entirely in stable rock. If less than 5 feet deep, a competent person may determine that a protective system is not required. The alternatives to sloping include these trench options:

1. Shoring Systems:

Hydraulic Shoring: Uses hydraulic pistons to apply pressure to trench walls, holding them in place. It’s adjustable and can be quickly installed and removed.

Mechanical Shoring: Involves using metal supports such as screw jacks, struts, and beams to brace trench walls. These systems are strong and can be tailored to the specific dimensions of the trench.

Pneumatic Shoring: Similar to hydraulic shoring but uses air pressure to stabilize the trench walls.

2. Trench Boxes

Trench boxes are robust steel or aluminum structures placed inside the trench to protect workers from cave-ins. They provide a safe working area within the trench and are particularly useful for deep or narrow trenches.

Trench boxes come in various sizes and configurations to suit different excavation needs and can be stacked for deeper excavations.

3. Shield Systems:

Shield systems are portable, protective structures that can be moved along the trench as work progresses. They can be made of steel, aluminum, or composite materials and offer flexibility in terms of size and strength.

Examples include slide rail systems, which provide support to the trench walls as the excavation proceeds.

We have shown you three protective system and there are many others available. 

Using these protective systems allows for vertical or near-vertical trench walls, which can be critical in areas with limited space or where traditional sloping is not feasible. The choice of system depends on factors such as soil conditions, trench depth, available space, and project-specific requirements. Each method provides a safe working environment for workers and ensures compliance with OSHA regulations and industry safety standards.

When is Shoring Required

Shoring is required during excavation or trenching when the soil’s stability is compromised, posing a risk of collapse or cave-in. Here are common scenarios when shoring is necessary:

Unstable Soil Conditions

Shoring is essential when excavating in soil types prone to collapse, such as loose or granular soils (Type C soils according to OSHA classification). These soils lack cohesion and are at a higher risk of cave-ins without support.

Deep Excavations

As the depth of the excavation increases, the lateral pressure exerted by the surrounding soil also increases. Shoring becomes necessary to prevent the walls of the trench from collapsing inward under the pressure, ensuring the safety of workers.

Adjacent Structures

When excavating near existing structures, utilities, or roads, shoring may be required to prevent soil movement that could damage adjacent infrastructure. Shoring also provides stability to the excavation site, minimizing the risk of ground settlement or subsidence.

Water Table

Excavations conducted below the groundwater table are susceptible to water seepage and soil instability. Shoring is necessary to prevent water infiltration and maintain the integrity of the excavation walls, especially in cohesive soils that may become saturated and lose strength.

Changing Soil Conditions

Soil conditions can change unexpectedly during excavation due to weather conditions, groundwater fluctuations, or disturbances from nearby activities. If soil stability becomes compromised, shoring may be required to ensure the safety of workers and prevent accidents.

Regulatory Requirements

Local regulations and safety standards may dictate when shoring is required based on factors such as excavation depth, soil type, and proximity to existing structures or utilities. Compliance with these regulations is essential to ensure safe excavation practices.

In summary, shoring is necessary during excavation or trenching operations to provide support and stability to the excavation walls, reducing the risk of collapse and ensuring the safety of workers and surrounding infrastructure.

Soil Compaction

Compaction refers to the process of densifying the soil or backfill material to increase its load-bearing capacity and prevent settling or shifting over time. After plumbing pipes or structures are placed in the excavated trenches, the backfill material is added in layers and each layer is compacted using mechanical means such as vibratory plate compactors, rollers, or tampers. Proper compaction ensures that the soil is stable and that voids are minimized, which helps to protect the integrity of the plumbing infrastructure, preventing future issues such as pipe displacement or leaks due to ground movement.

Swell Factor

Swell refers to the increase in volume that soil or excavated material undergoes when it is disturbed and removed from its natural, compacted state. When soil is excavated, it expands because the tightly packed particles are loosened, resulting in an increase in volume. This phenomenon is known as swell.

Soil Swell Factors. When soil increases in size after excavation.
Soil Swell Factors. When soil increases in size after excavation.

Understanding swell is important for plumbers and construction professionals because it affects the amount of backfill material that will be required to refill an excavated trench or hole. Proper planning for swell ensures that there is sufficient material to achieve the desired compaction and stability when backfilling around plumbing installations.

Sand and Gravel Bedding

Using sand and gravel at the bottom of an excavation where piping is being installed serves several important purposes:

Providing a Stable Bedding: 

Sand and gravel create a stable and even bedding for the pipes, ensuring that they are well-supported along their length. This reduces the risk of pipe deflection or damage due to uneven settlement or point loading.

Facilitating Drainage: 

Sand and gravel promote good drainage around the pipes, preventing water accumulation that could lead to soil instability or erosion. Proper drainage helps maintain the integrity of the piping system and prevents issues related to waterlogging or frost heave.

Protecting Pipes from Sharp Objects: 

Sand and gravel act as a cushion, protecting the pipes from sharp rocks or other debris in the soil that could puncture or damage them. This is particularly important for plastic or PVC pipes, which are more susceptible to damage from sharp objects.

Easing Piping Installation: 

The granular nature of sand and gravel makes it easier to achieve precise grading and alignment of the pipes during installation. This ensures that the pipes are laid at the correct slope and elevation for optimal performance.

Amount of Sand and Gravel Used

The amount of sand and gravel used at the bottom of an excavation varies depending on the type and size of the piping, as well as the project specifications. However, typical guidelines include:

Bedding Layer: 

A bedding layer of sand or gravel is usually placed 4 to 6 inches (10 to 15 centimeters) thick. This layer provides a firm foundation for the pipes.

Initial Backfill: 

After the pipes are laid, an initial backfill of sand or gravel is placed around and over the pipes to a depth of about 6 to 12 inches (15 to 30 centimeters) above the pipe. This initial backfill helps to secure the pipes in place and provides additional protection.

Final Backfill: 

The final backfill, which may consist of the excavated soil or other suitable material, is then placed on top of the initial backfill. The final backfill is typically compacted in layers to prevent settling and ensure stability.

These layers help ensure that the pipes are properly supported, protected, and aligned, contributing to the longevity and functionality of the piping system. The exact specifications may vary based on local codes, engineering requirements, and the specific conditions of the project site.

Digging Equipment used for Excavations and Trenches

Excavations and trenches require specialized equipment to efficiently and safely remove soil and create the desired shapes and depths. Here are various types of digging equipment commonly used for these purposes:

Excavators

Excavators are versatile machines equipped with a bucket attached to a hydraulic arm. They can rotate 360 degrees and are capable of digging, lifting, and loading materials.

Excavators are suitable for a wide range of excavation tasks, including digging trenches, foundations, and utility trenches.

Backhoe Loaders

Backhoe loaders combine a backhoe (rear-mounted digging arm) with a loader (front-mounted scoop). They are versatile and commonly used in construction projects.

Backhoe loaders are useful for smaller excavation jobs, such as digging trenches for utilities, backfilling, and loading materials.

Trenchers

Trenchers are specialized machines designed specifically for digging narrow and deep trenches. They feature a rotating chain or blade that cuts into the ground to create the trench.

Trenchers are ideal for excavating trenches for utilities like water pipes, sewer lines, and electrical conduits.

Mini Excavators

Mini excavators are compact versions of standard excavators, with a smaller footprint and reduced weight. They offer increased maneuverability and are suitable for tight spaces.

Mini excavators are commonly used for small-scale excavation projects, landscaping, and utility installation in urban areas or confined spaces.

Crawler Excavators

Crawler excavators are equipped with tracks for stability and mobility over rough terrain. They offer high digging power and are suitable for heavy-duty excavation work.

Crawler excavators are used in large-scale excavation projects, such as road construction, mining, and earthmoving.

Skid Steer Loaders

Skid steer loaders are compact, maneuverable machines with a small turning radius. They feature a bucket or attachment mounted on a pivoting frame.

Skid steer loaders are versatile and can be used for various tasks, including excavation, loading, grading, and landscaping.

These are just a few examples of the equipment used for excavations and trenches. The choice of equipment depends on factors such as the size of the project, the type of soil, accessibility, and the specific requirements of the task at hand.

Plumbing Estimating Spreadsheet with Excavation Calculator

The Basics of Excavation and backfill